Part Number Hot Search : 
00ETTS 30001 SMD03 P6SMB75C TSML1000 SA1630BE M4509G 3DG64
Product Description
Full Text Search
 

To Download HCPL-2630-000E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  caution: it is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by esd. features ?? 15 kv/s minimum common mode rejection (cmr) at v cm = 1kv for hcnw2611, hcpl-2611, hcpl-4661, hcpl-0611, hcpl-0661 ?? high speed: 10 mbd typical ?? lsttl/ttl compatible ?? low input current capability: 5 ma ?? guaranteed ac and dc performance over temper ature: -40c to +85c ?? available in 8-pin dip, soic-8, widebody packages ?? strobable output (single channel products only) ?? safety approval ul recognized - 3750 v rms for 1 minute and 5000 vrms* for 1 minute per ul1577 csa approved iec/en/din en 60747-5-2 approved with v iorm = 560 v peak for 06xx option 060 v iorm = 630 v peak for 6n137/26xx option 060 v iorm = 1414 v peak for hcnw137/26x1 ?? mil-prf-38534 hermetic version available (hcpl-56xx/66xx) applications ?? isolated line receiver ?? computer-peripheral interfaces ?? microprocessor system interfaces ?? digital isolation for a/d, d/a conversion ?? switching power supply ?? instrument input/output isolation ?? ground loop elimination ?? pulse transformer replacement ?? power transistor isolation in motor drives ?? isolation of high speed logic systems functional diagram *5000 v rms/1 minute rating is for hcnw137/26x1 and option 020 (6n137, hcpl-2601/11/30/31, hcpl-4661) products only. a 0.1 ? f bypass capacitor must be connected between pins 5 and 8. 1 2 3 4 8 7 6 5 cathode anode gnd v v cc o 1 2 3 4 8 7 6 5 anode 2 cathode 2 cathode 1 anode 1 gnd v v cc o2 v e v o1 6n137, hcpl-2601/2611 hcpl-0600/0601/0611 hcpl-2630/2631/4661 hcpl-0630/0631/0661 nc nc led on off on off on off enable h h l l nc nc output l h h h l h truth table (positive logic) led on off output l h truth table (positive logic) shield shield 6n137, hcnw137, hcnw2601, hcnw2611, hcpl-0600, hcpl-0601, hcpl-0611, hcpl-0630, hcpl-0631, hcpl-0661, hcpl-2601, hcpl-2611, hcpl-2630, hcpl-2631, hcpl-4661 high cmr, high speed ttl compatible optocouplers data sheet description the 6n137, hcpl-26xx/06xx/4661, hcnw137/26x1 are optically coupled gates that combine a gaasp light emit- ting diode and an integrated high gain photo detector. an enable input allows the detector to be strobed. the output of the detector ic is an open collector schottky- clamped transistor. the internal shield provides a guar- anteed common mode transient immunity specifi cation up to 15,000 v/s at vcm=1000v. this unique design provides maximum ac and dc circuit iso- lation while achieving ttl compatibility. the optocoupler ac and dc operational param e t ers are guaranteed from - 40c to +85c allowing troublefree system performance. lead (pb) free rohs 6 fully compliant rohs 6 fully co m pliant options available; -xxxe denotes a lead-f r ee p r oduct
2 the 6n137, hcpl-26xx, hcpl-06xx, hcpl-4661, hcnw137, and hcnw26x1 are suitable for high speed logic interfac- ing, input/output buff ering, as line receivers in environ- ments that conventional line receivers cannot tolerate and are recom mended for use in extremely high ground or induced noise environments. selection guide widebody minimum cmr 8-pin dip (300 mil) small-outline so-8 (400 mil) hermetic input single on- single dual single dual single and dual dv/dt v cm current output channel channel channel channel channel channel (v/s) (v) (ma) enable package package package package package packages 1000 10 5 yes 6n137 5,000 1,000 5 yes hcpl-0600 hcnw137 no hcpl-2630 hcpl-0630 10,000 1,000 yes hcpl-2601 hcpl-0601 hcnw2601 no hcpl-2631 hcpl-0631 15,000 1,000 yes hcpl-2611 hcpl-0611 hcnw2611 no hcpl-4661 hcpl-0661 1,000 50 yes hcpl-2602 [1] 3, 500 300 yes hcpl-2612 [1] 1,000 50 3 yes hcpl-261a [1] hcpl-061a [1] no hcpl-263a [1] hcpl-063a [1] 1,000 [2] 1,000 yes hcpl-261n [1] hcpl-061n [1] no hcpl-263n [1] hcpl-063n [1] 1,000 50 12.5 [3] hcpl-193x [1] hcpl-56xx [1] hcpl-66xx [1] notes: 1. technical data are on separate avago publications. 2. 15 kv/s with v cm = 1 kv can be achieved using avago application circuit. 3. enable is available for single channel products only, except for hcpl-193x devices.
3 ordering information hcpl-xxxx is ul recognized with 3750 vrms for 1 minute per ul1577. hcnwxxxx is ul rcognized with 5000 vrms for 1 minute per ul1577. part number option package surface mount gull wing tape & reel ul 5000 vrms/ 1 minute rating iec/en/din en 60747-5-2 quantity rohs compliant non rohs compliant 6n137 -000e no option 300mil dip-8 50 per tube -300e #300 x x 50 per tube -500e #500 x x x 1000 per reel -020e #020 x 50 per tube -320e #320 x x x 50 per tube -520e #520 x x x x 1000 per reel -060e #060 x 50 per tube -560e -560 x x x x 1000 per reel hcpl-2601 -000e no option 300mil dip-8 50 per tube -300e #300 x x 50 per tube -500e #500 x x x 1000 per reel -020e #020 x 50 per tube -320e #320 x x x 50 per tube -520e #520 x x x x 1000 per reel -060e #060 x 50 per tube -360e - x x x 50 per tube hcpl-2611 -000e no option 300mil dip-8 50 per tube -300e #300 x x 50 per tube -500e #500 x x x 1000 per reel -020e #020 x 50 per tube -320e #320 x x x 50 per tube -520e #520 x x x x 1000 per reel -060e #060 x 50 per tube -360e #360 x x x 50 per tube -560e #560 x x x x 1000 per reel hcpl-2630 -000e no option 300mil dip-8 50 per tube -300e #300 x x 50 per tube -500e #500 x x x 1000 per reel -020e #020 x 50 per tube -320e #320 x x x 50 per tube -520e -520 x x x x 1000 per reel hcpl-2631 hcpl-4661 -000e no option 300mil dip-8 50 per tube -300e #300 x x 50 per tube -500e #500 x x x 1000 per reel -020e #020 x 50 per tube -320e #320 x x x 50 per tube -520e #520 x x x x 1000 per reel
4 schematic shield 8 6 5 2+ 3 v f use of a 0.1 ? bypass capacitor connected between pins 5 and 8 is recommended (see note 5). i f i cc v cc v o gnd i o v e i e 7 6n137, hcpl-2601/2611 hcpl-0600/0601/0611 hcnw137, hcnw2601/2611 shield 8 7 + 2 v f1 i f1 i cc v cc v o1 i o1 1 shield 6 5 4 v f2 + i f2 v o2 gnd i o2 3 hcpl-2630/2631/4661 hcpl-0630/0631/0661 part number option package surface mount gull wing tape & reel ul 5000 vrms/ 1 minute rating iec/en/din en 60747-5-2 quantity rohs compliant non rohs compliant hcpl-0600 hcpl-0601 hcpl-0611 -000e no option so-8 x 100 per tube -500e #500 x x 1500 per reel -060e #060 x x 100 per tube -560e #560 x x x 1500 per reel hcpl-0630 hcpl-0631 hcpl-0661 -000e no option so-8 x 100 per tube -500e #500 x x 1500 per reel hcnw137 hcnw2601 hcnw2611 -000e no option 400 mil dip-8 x x 42 per tube -300e #300 x x x x 42 per tube -500e #500 x x x x x 750 per reel to order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. combination of option 020 and option 060 is not available. example 1: hcpl-2611-560e to order product of 300mil dip gull wing surface mount package in tape and reel packag ing with iec/en/din en 60747-5-2 safety approval in rohs compliant. example 2: hcpl-2630 to order product of 300mil dip package in tube packaging and non rohs compliant. option datasheets are available. contact your avago sales representative or authorized distributor for information. notes: the notation #xxx is used for existing products, while (new) products launched since 15 th july 2001 and rohs compliant option will use -xxxe.
5 package outline drawings 8-pin dip package** (6n137, hcpl-2601/11/30/31, hcpl-4661) 8-pin dip package with gull wing surface mount option 300 (6n137, hcpl-2601/11/30/31, hcpl-4661) **jedec registered data (for 6n137 only). 1.080 ?0.320 (0.043 ?0.013) 2.54 ?0.25 (0.100 ?0.010) 0.51 (0.020) min. 0.65 (0.025) max. 4.70 (0.185) max. 2.92 (0.115) min. 5?typ. 0.254 + 0.076 - 0.051 (0.010 + 0.003) - 0.002) 7.62 ?0.25 (0.300 ?0.010) 6.35 ?0.25 (0.250 ?0.010) 9.65 ?0.25 (0.380 ?0.010) 1.78 (0.070) max. 1.19 (0.047) max. a xxxxz yyww date code dimensions in millimeters and (inches). 5 6 7 8 4 3 2 1 option code* ul recognition ur type number *marking code letter for option numbers "l" = option 020 "v" = option 060 option numbers 300 and 500 not marked. note: floating lead protrusion is 0.25 mm (10 mils) max. 3.56 ?0.13 (0.140 ?0.005) 0.635 ?0.25 (0.025 ?0.010) 12?nom. 9.65 ?0.25 (0.380 ?0.010) 0.635 ?0.130 (0.025 ?0.005) 7.62 ?0.25 (0.300 ?0.010) 5 6 7 8 4 3 2 1 9.65 ?0.25 (0.380 ?0.010) 6.350 ?0.25 (0.250 ?0.010) 1.016 (0.040) 1.27 (0.050) 10.9 (0.430) 2.0 (0.080) land pattern recommendation 1.080 ?0.320 (0.043 ?0.013) 1.780 (0.070) max. 1.19 (0.047) max. 2.54 (0.100) bsc dimensions in millimeters (inches). lead coplanarity = 0.10 mm (0.004 inches). 0.254 + 0.076 - 0.051 (0.010 + 0.003) - 0.002) note: floating lead protrusion is 0.25 mm (10 mils) max. 3.56 ?0.13 (0.140 ?0.005)
6 small-outline so-8 package (hcpl-0600/01/11/30/31/61) 8-pin widebody dip package (hcnw137, hcnw2601/11) xxx yww 8765 4 3 2 1 5.994 ?0.203 (0.236 ?0.008) 3.937 ?0.127 (0.155 ?0.005) 0.406 ?0.076 (0.016 ?0.003) 1.270 (0.050) bsc 5.080 ?0.127 (0.200 ?0.005) 3.175 ?0.127 (0.125 ?0.005) 1.524 (0.060) 45?x 0.432 (0.017) 0.228 ?0.025 (0.009 ?0.001) type number (last 3 digits) date code 0.305 (0.012) min. total package length (inclusive of mold flash) 5.207 ?0.254 (0.205 ?0.010) dimensions in millimeters (inches). lead coplanarity = 0.10 mm (0.004 inches) max. note: floating lead protrusion is 0.15 mm (6 mils) max. 0.203 ?0.102 (0.008 ?0.004) 7 pin one 0 ~ 7 * * 7.49 (0.295) 1.9 (0.075) 0.64 (0.025) land pattern recommendation 5 6 7 8 4 3 2 1 11.23 ?0.15 (0.442 ?0.006) 1. 8 0 ?0.15 (0.071 ?0.006) 5.10 (0.201) max. 1.55 (0.061) max. 2.54 (0.100) typ. dimensions in millimeters (inches). note: floating lead protrusion is 0.25 mm (10 mils) max. 7?typ. 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) 11.00 (0.433) 9.00 ?0.15 (0.354 ?0.006) max. 10.16 (0.400) typ. a hcnwxxxx yyww date code type number 0.51 (0.021) min. 0.40 (0.016) 0.56 (0.022) 3.10 (0.122) 3.90 (0.154)
7 8-pin widebody dip package with gull wing surface mount option 300 (hcnw137, hcnw2601/11) solder refl ow temperature profi le 1.00 ?0.15 (0.039 ?0.006) 7?nom. 12.30 ?0.30 (0.484 ?0.012) 0.75 ?0.25 (0.030 ?0.010) 11.00 (0.433) 5 6 7 8 4 3 2 1 11.23 ?0.15 (0.442 ?0.006) 9.00 ?0.15 (0.354 ?0.006) 1.3 (0.051) 13.56 (0.534) 2.29 (0.09) land pattern recommendation 1.80 ?0.15 (0.071 ?0.006) 4.00 (0.158) max. 1.55 (0.061) max. 2.54 (0.100) bsc dimensions in millimeters (inches). lead coplanarity = 0.10 mm (0.004 inches). note: floating lead protrusion is 0.25 mm (10 mils) max. 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) max. 0 time (seconds) temperature ( c) 200 100 50 150 100 200 250 300 0 30 sec. 50 sec. 30 sec. 160 c 140 c 150 c peak temp. 245 c peak temp. 240 c peak temp. 230 c soldering time 200 c preheating time 150 c, 90 + 30 sec. 2.5 c 0.5 c/sec. 3 c + 1 c/C0.5 c tight typical loose room temperature preheating rate 3 c + 1 c/C0.5 c/sec. reflow heating rate 2.5 c 0.5 c/sec. note: non-halide flux should be used.
8 regulatory information the 6n137, hcpl-26xx/06xx/46xx, and hcnw137/26xx have been approved by the following organizations: recommended pb-free ir profi le insulation and safety related specifi cations 8-pin dip widebody (300 mil) so-8 (400 mil) parameter symbol value value value units conditions minimum external l(101) 7.1 4.9 9.6 mm measured from input terminals air gap (external to output terminals, shortest clearance) distance through air. minimum external l(102) 7.4 4.8 10.0 mm measured from input terminals tracking (external to output terminals, shortest creepage) distance path along body. minimum internal 0.08 0.08 1.0 mm through insulation distance, plastic gap conductor to conductor, usually (internal clearance) the direct distance between the photoemitter and photodetector inside the optocoupler cavity. minimum internal na na 4.0 mm measured from input terminals tracking (internal to output terminals, along creepage) internal cavity. tracking resistance cti 200 200 200 volts din iec 112/vde 0303 part 1 (comparative tracking index) isolation group iiia iiia iiia material group (din vde 0110, 1/89, table 1) option 300 - surface mount classifi cation is class a in accordance with cecc 00802. ul recognized under ul 1577, component recognition program, file e55361. csa approved under csa component acceptance notice #5, file ca 88324. iec/en/din en 60747-5-2 approved under iec 60747-5-2:1997 + a1:2002 en 60747-5-2:2001 + a1:2002 din en 60747-5-2 (vde 0884 teil 2):2003-01 (option 060 and hcnw only) 217 c ramp-down 6 c/sec. max. ramp-up 3 c/sec. max. 150 - 200 c * 260 +0/-5 c t 25 c to peak 60 to 150 sec. 15 sec. time within 5 c of actual peak temperature t p t s preheat 60 to 180 sec. t l t l t smax t smin 25 t p time temperature notes: the time from 25 c to peak temperature = 8 minutes max. t smax = 200 c, t smin = 150 c note: non-halide flux should be used. * recommended peak temperature for widebody 400mils package is 245 c
9 iec/en/din en 60747-5-2 insulation related characteristics (hcpl-06xx option 060 only) description symbol characteristic units installation classifi cation per din vde 0110/1.89, table 1 for rated mains voltage 150 v rms i-iv for rated mains voltage 300 v rms i-iii for rated mains voltage 600 v rms i-iii climatic classifi cation 55/85/21 pollution degree (din vde 0110/1.89) 2 maximum working insulation voltage v iorm 567 v peak input to output test voltage, method b* v iorm x 1.875 = v pr , 100% production test with t m = 1 sec, v pr 1063 v peak partial discharge < 5 pc input to output test voltage, method a* v iorm x 1.5 = v pr , type and sample test, v pr 851 v peak t m = 60 sec, partial discharge < 5 pc highest allowable overvoltage (transient overvoltage, t ini = 10 sec) v iotm 6000 v peak safety limiting values (maximum values allowed in the event of a failure) case temperature t s 150 c input current** i s,input 150 ma output power** p s,output 600 mw insulation resistance at t s , v io = 500 v r s 10 9 ? *refer to the front of the optocoupler section of the current catalog, under product safety regulations section, iec/en/din en 60747-5-2, for a detailed description. note: isolation characteristics are guaranteed only within the saf ety maximum ratings which must be ensured by protective circu its in applica- tion.
10 iec/en/din en 60747-5-2 insulation related characteristics (hcpl-26xx; 46xx; 6n13x option 060 only) description symbol characteristic units installation classifi cation per din vde 0110/1.89, table 1 for rated mains voltage 300 v rms i-iv for rated mains voltage 450 v rms i-iii climatic classifi cation 55/85/21 pollution degree (din vde 0110/1.89) 2 maximum working insulation voltage v iorm 630 v peak input to output test voltage, method b* v iorm x 1.875 = v pr , 100% production test with t m = 1 sec, v pr 1181 v peak partial discharge < 5 pc input to output test voltage, method a* v iorm x 1.5 = v pr , type and sample test, v pr 945 v peak t m = 60 sec, partial discharge < 5 pc highest allowable overvoltage* (transient overvoltage, t ini = 10 sec) v iotm 6000 v peak safety limiting values (maximum values allowed in the event of a failure, also see figure 16, thermal derating curve.) case temperature t s 175 c input current i s,input 230 ma output power p s,output 600 mw insulation resistance at t s , v io = 500 v r s 10 9 ? *refer to the front of the optocoupler section of the current catalog, under product safety regulations section, iec/en/din en 60747-5-2, for a detailed description. note: isolation characteristics are guaranteed only within the saf ety maximum ratings which must be ensured by protective circu its in applica- tion. iec/en/din en 60747-5-2 insulation related characteristics (hcnw137/2601/2611 only) description symbol characteristic units installation classifi cation per din vde 0110/1.89, table 1 for rated mains voltage 600 v rms i-iv for rated mains voltage 1000 v rms i-iii climatic classifi cation (din iec 68 part 1) 55/100/21 pollution degree (din vde 0110/1.89) 2 maximum working insulation voltage v iorm 1414 v peak input to output test voltage, method b* v iorm x 1.875 = v pr , 100% production test with t m = 1 sec, v pr 2651 v peak partial discharge < 5 pc input to output test voltage, method a* v iorm x 1.5 = v pr , type and sample test, v pr 2121 v peak t m = 60 sec, partial discharge < 5 pc highest allowable overvoltage* (transient overvoltage, t ini = 10 sec) v iotm 8000 v peak safety limiting values (maximum values allowed in the event of a failure, also see figure 16, thermal derating curve.) case temperature t s 150 c input current i s,input 400 ma output power p s,output 700 mw insulation resistance at t s , v io = 500 v r s 10 9 ? *refer to the front of the optocoupler section of the current catalog, under product safety regulations section, iec/en/din en 60747-5-2, for a detailed description. note: isolation characteristics are guaranteed only within the saf ety maximum ratings which must be ensured by protective circu its in applica- tion.
11 absolute maximum ratings* (no derating required up to 85c) parameter symbol package** min. max. units note storage temperature t s -55 125 c operating temperature? t a -40 85 c average forward input current i f single 8-pin dip 20 ma 2 single so-8 widebody dual 8-pin dip 15 1, 3 dual so-8 reverse input voltage v r 8-pin dip, so-8 5 v 1 widebody 3 input power dissipation p i widebody 40 mw supply voltage v cc 7 v (1 minute maximum) enable input voltage (not to v e single 8-pin dip v cc + 0.5 v exceed v cc by more than single so-8 500 mv) widebody enable input current i e 5 ma output collector current i o 50 ma 1 output collector voltage v o 7 v 1 output collector power p o single 8-pin dip 85 mw dissipation single so-8 widebody dual 8-pin dip 60 1, 4 dual so-8 lead solder temperature t ls 8-pin dip 260c for 10 sec., (through hole parts only) 1.6 mm below seating plane widebody 260c for 10 sec., up to seating plane solder refl ow temperature so-8 and see package outline profi le (surface mount parts only) option 300 drawings section *jedec registered data (for 6n137 only). **ratings apply to all devices except otherwise noted in the package column. ?0c to 70c on jedec registration. recommended operating conditions parameter symbol min. max. units input current, low level i fl * 0 250 a input current, high level [1] i fh ** 5 15 ma power supply voltage v cc 4.5 5.5 v low level enable voltage? v el 0 0.8 v high level enable voltage? v eh 2.0 v cc v operating temperature t a -40 85 c fan out (at r l = 1 k) [1] n 5 ttl loads output pull-up resistor r l 330 4 k ? *the off condition can also be guaranteed by ensuring that v fl 0.8 volts. **the initial switching threshold is 5 ma or less. it is recommended that 6.3 ma to 10 ma be used for best performance and to p ermit at least a 20% led degradation guardband. ?for single channel products only.
12 electrical specifi cations over recommended temperature (t a = -40c to +85c) unless otherwise specifi ed. all typicals at v cc = 5 v, t a = 25c. all enable test conditions apply to single channel products only. see note 5. parameter sym. package min. typ. max. units test conditions fig. note high level output i oh * all 5.5 100 a v cc = 5.5 v, v e = 2.0 v, 1 1, 6, current v o = 5.5 v, i f = 250 ? a 19 input threshold i th single channel 2.0 5.0 ma v cc = 5.5 v, v e = 2.0 v, 2, 3 19 current widebody v o = 0.6 v, dual channel 2.5 i ol (sinking) = 13 ma low level output v ol * 8-pin dip 0.35 0.6 v v cc = 5.5 v, v e = 2.0 v, 2, 3, 1, 19 voltage so-8 i f = 5 ma, 4, 5 widebody 0.4 i ol (sinking) = 13 ma high level supply i cch single channel 7.0 10.0* ma v e = 0.5 v v cc = 5.5 v 7 current 6.5 v e = v cc i f = 0 ma dual channel 10 15 both channels low level supply i ccl single channel 9.0 13.0* ma v e = 0.5 v v cc = 5.5 v 8 current 8.5 v e = v cc i f = 10 ma dual channel 13 21 both channels high level enable i eh single channel -0.7 -1.6 ma v cc = 5.5 v, v e = 2.0 v current low level enable i el * -0.9 -1.6 ma v cc = 5.5 v, v e = 0.5 v 9 current high level enable v eh 2.0 v 19 voltage low level enable v el 0.8 v voltage input forward v f 8-pin dip 1.4 1.5 1.75* v t a = 25c i f = 10 ma 6, 7 1 voltage so-8 1.3 1.80 widebody 1.25 1.64 1.85 t a = 25c 1.2 2.05 input reverse bv r * 8-pin dip 5 v i r = 10 a 1 breakdown so-8 voltage widebody 3 i r = 100 a, t a = 25c input diode dv f / 8-pin dip -1.6 mv/c i f = 10 ma 7 1 temperature t a so-8 coeffi cient widebody -1.9 input capacitance c in 8-pin dip 60 pf f = 1 mhz, v f = 0 v 1 so-8 widebody 70 *jedec registered data for the 6n137. the jedec registration specifi es 0c to +70c. hp specifi es -40c to +85c.
13 switching specifi cations (ac) over recommended temperature (t a = -40c to +85c), v cc = 5 v, i f = 7.5 ma unless otherwise specifi ed. all typicals at t a = 25c, v cc = 5 v. parameter sym. package** min. typ. max. units test conditions fig. note propagation delay t plh 20 48 75* ns t a = 25c r l = 350 ? 8, 9, 1, 10, time to high 100 c l = 15 pf 10 19 output level propagation delay t phl 25 50 75* ns t a = 25c 1, 11, time to low 100 19 output level pulse width |t phl - t plh | 8-pin dip 3.5 35 ns 8, 9, 13, 19 distortion so-8 10, widebody 40 11 propagation delay t psk 40 ns 12, 13, skew 19 output rise t r 24 ns 12 1, 19 time (10-90%) output fall t f 10 ns 12 1, 19 time (90-10%) propagation delay t elh single channel 30 ns r l = 350 ? , 13, 14 time of enable c l = 15 pf, 14 from v eh to v el v el = 0 v, v eh = 3 v propagation delay t ehl single channel 20 ns 15 time of enable from v el to v eh *jedec registered data for the 6n137. **ratings apply to all devices except otherwise noted in the package column. parameter sym. device min. typ. units test conditions fig. note logic high |cm h | 6n137 1,000 10,000 v/s |v cm | = 10 v v cc = 5 v, i f = 0 ma, 15 1, 16, common hcpl-2630 5,000 10,000 |v cm | = 1 kv v o(min) = 2 v, 18, 19 mode hcpl-0600/0630 r l = 350 ? , t a = 25c transient hcnw137 immunity hcpl-2601/2631 10,000 15,000 |v cm | = 1 kv hcpl-0601/0631 hcnw2601 hcpl-2611/4661 15,000 25,000 |v cm | = 1 kv hcpl-0611/0661 hcnw2611 logic low |cm l | 6n137 1,000 10,000 v/s |v cm | = 10 v v cc = 5 v, i f = 7.5 ma, 15 1, 17, common hcpl-2630 5,000 10,000 |v cm | = 1 kv v o(max) = 0.8 v, 18, 19 mode hcpl-0600/0630 r l = 350 ? , t a = 25c transient hcnw137 immunity hcpl-2601/2631 10,000 15,000 |v cm | = 1 kv hcpl-0601/0631 hcnw2601 hcpl-2611/4661 15,000 25,000 |v cm | = 1 kv hcpl-0611/0661 hcnw2611
14 package characteristics all typicals at t a = 25c. parameter sym. package min. typ. max. units test conditions fig. note input-output i i-o * single 8-pin dip 1 ? a 45% rh, t = 5 s, 20, 21 insulation single so-8 v i-o = 3 kv dc, t a = 25c input-output v iso 8-pin dip, so-8 3750 v rms rh 50%, t = 1 min, 20, 21 momentary with- widebody 5000 t a = 25c 20, 22 stand voltage** opt 020? 5000 input-output r i-o 8-pin dip, so-8 10 12 ? v i-o = 500 v dc 1, 20, resistance widebody 10 12 10 13 t a = 25c 23 10 11 t a = 100c input-output c i-o 8-pin dip, so-8 0.6 pf f = 1 mhz, t a = 25c 1, 20, capacitance widebody 0.5 0.6 23 input-input i i-i dual channel 0.005 ? a rh 45%, t = 5 s, 24 insulation v i-i = 500 v leakage current resistance r i-i dual channel 10 11 ? 24 (input-input) capacitance c i-i dual 8-pin dip 0.03 pf f = 1 mhz 24 (input-input) dual so-8 0.25 *jedec registered data for the 6n137. the jedec registration specifi es 0c to 70c. avago specifi es -40c to 85c. **the input-output momentary withstand voltage is a dielectric v oltage rating that should not be interpreted as an input-output continuous volt- age rating. for the continuous voltage rating refer to the iec/en/din en 60747-5-2 insulation characteristics table (if applica ble), your equipment level safety specifi cation or avago application note 1074 entitled optocoupler input-output endurance voltage. ?for 6n137, hcpl-2601/2611/2630/2631/4661 only. notes: 1. each channel. 2. peaking circuits may produce transient input currents up to 50 ma, 50 ns maximum pulse width, provided average current doe s not exceed 20 ma. 3. peaking circuits may produce transient input currents up to 50 ma, 50 ns maximum pulse width, provided average current doe s not exceed 15 ma. 4. derate linearly above 80c free-air temperature at a rate of 2.7 mw/c for the soic-8 package. 5. bypassing of the power supply line is required, with a 0.1 f ceramic disc capacitor adjacent to each optocoupler as illus trated in figure 17. total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm. 6. the jedec registration for the 6n137 specifi es a maximum i oh of 250 a. avago guarantees a maximum i oh of 100 ? a. 7. the jedec registration for the 6n137 specifi es a maximum i cch of 15 ma. avago guarantees a maximum i cch of 10 ma. 8. the jedec registration for the 6n137 specifi es a maximum i ccl of 18 ma. avago guarantees a maximum i ccl of 13 ma. 9. the jedec registration for the 6n137 specifi es a maximum i el of C2.0 ma. avago guarantees a maximum i el of -1.6 ma. 10. the t plh propagation delay is measured from the 3.75 ma point on the falling edge of the input pulse to the 1.5 v point on the rising e dge of the output pulse. 11. the t phl propagation delay is measured from the 3.75 ma point on the rising edge of the input pulse to the 1.5 v point on the falling e dge of the output pulse. 12. t psk is equal to the worst case diff erence in t phl and/or t plh that will be seen between units at any given temperature and specifi ed test conditions. 13. see application section titled propagation delay, pulse-width distortion and propagation delay skew for more information . 14. the t elh enable propagation delay is measured from the 1.5 v point on the falling edge of the enable input pulse to the 1.5 v point on the rising edge of the output pulse. 15. the t ehl enable propagation delay is measured from the 1.5 v point on the rising edge of the enable input pulse to the 1.5 v point on t he falling edge of the output pulse. 16. cm h is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state ( i.e., v o > 2.0 v). 17. cm l is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i .e., v o < 0.8 v). 18. for sinusoidal voltages, (|dv cm | / dt) max = ? f cm v cm (p-p). 19. no external pull up is required for a high logic state on the enable input. if the v e pin is not used, tying v e to v cc will result in improved cmr performance. for single channel products only. 20. device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together. 21. in accordance with ul1577, each optocoupler is proof tested by applying an insulation test voltage 4500 v rms for one se cond (leakage detection current limit, i i-o 5 ? a). this test is performed before the 100% production test for partial discharge (method b) shown in the iec/en/din en 60747- 5-2 insulation characteristics table, if applicable. 22. in accordance with ul 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 v rms for one s econd (leakage detection current limit, i i-o 5 ? a). this test is performed before the 100% production test for partial discharge (method b) shown in the iec/en/din en 60747- 5-2 insulation characteristics table, if applicable. 23. measured between the led anode and cathode shorted together and pins 5 through 8 shorted together. for dual channel produc ts only. 24. measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. for dual channel products only
15 1 6 2 3 4 5 1234 5 6 i f ?forward input current ?ma r l = 350 r l = 1 k r l = 4 k 0 0 v cc = 5 v t a = 25 ? v o ?output voltage ?v 8 -pin dip, so- 8 v cc = 5.0 v v o = 0.6 v 6 3 -60 -20 20 60 100 t a ?temperature ?? 2 8 0 40 0 -40 0 i th ?input threshold current ?ma r l = 350 1 4 5 r l = 1 k r l = 4 k 8 -pin dip, so- 8 i oh ?high level output current ?? -60 0 t a ?temperature ?? 100 10 15 -20 5 20 v cc = 5.5 v v o = 5.5 v v e = 2.0 v* i f = 250 ? 60 -40 0 40 8 0 * for single channel products only v cc = 5.0 v v o = 0.6 v 6 3 -60 -20 20 60 100 t a ?temperature ?? 2 8 0 40 0 -40 0 i th ?input threshold current ?ma r l = 350 1 4 5 r l = 1 k r l = 4 k widebody 1 6 2 3 4 5 1234 5 6 i f ?forward input current ?ma r l = 350 r l = 1 k r l = 4 k 0 0 v cc = 5 v t a = 25 ? v o ?output voltage ?v widebody figure 2. typical output voltage vs. forward input current. figure 3. typical input threshold current vs. temperature. figure 1. typical high level output current vs. temperature.
16 0. 8 0.4 -60 -20 20 60 100 t a ?temperature ?? 0.2 8 0 40 0 -40 0 v ol ?low level output voltage ?v i o = 16 ma 0.1 0.5 0.7 i o = 6.4 ma 8 -pin dip, so- 8 v cc = 5.5 v v e = 2.0 v* i f = 5.0 ma 0.3 0.6 i o = 12. 8 ma i o = 9.6 ma * for single channel products only 0. 8 0.4 -60 -20 20 60 100 t a ?temperature ?? 0.2 8 0 40 0 -40 0 v ol ?low level output voltage ?v i o = 16 ma 0.1 0.5 0.7 i o = 6.4 ma widebody v cc = 5.5 v v e = 2.0 v i f = 5.0 ma 0.3 0.6 i o = 12. 8 ma i o = 9.6 ma v cc = 5.0 v v e = 2.0 v* v ol = 0.6 v 70 60 -60 -20 20 60 100 t a ?temperature ?? 50 8 0 40 0 -40 20 i ol ?low level output current ?ma 40 i f = 10-15 ma i f = 5.0 ma * for single channel products only i f ?forward current ?ma 1.1 0.001 v f ?forward voltage ?v 1.0 1000 1.3 0.01 1.5 1.2 1.4 0.1 t a = 25 ? 10 100 8 -pin dip, so- 8 i f + v f 1.6 i f - forward current - ma 1.2 0.001 v f - forward voltage - v 1.0 1000 1.4 0.01 1.6 1.3 1.5 0.1 10 100 widebody i f + - v f 1.7 t a = 25 o c dv f /dt ?forward voltage temperature coefficient ?mv/? 0.1 1 10 100 i f ?pulse input current ?ma -1.9 -2.2 -2.1 -2.0 -1. 8 -2.3 widebody dv f /dt ?forward voltage temperature coefficient ?mv/? 0.1 1 10 100 i f ?pulse input current ?ma -1.4 -2.2 -2.0 -1. 8 -1.6 -1.2 -2.4 8 -pin dip, so- 8 figure 7. typical temperature coeffi cient of forward voltage vs. input current. figure 4. typical low level output voltage vs. temperature. figure 5. typical low level output current vs. temperature. figure 6. typical input diode forward characteristic.
17 output v monitoring node o +5 v 7 5 6 8 2 3 4 1 pulse gen. z = 50 t = t = 5 ns o f i f l r r m cc v 0.1? bypass *c l gnd input monitoring node r single channel output v monitoring node o +5 v 7 5 6 8 2 3 4 1 pulse gen. z = 50 t = t = 5 ns o f i f l r r m cc v 0.1? bypass c l * gnd input monitoring node r dual channel 1.5 v t phl t plh i f input o v output i = 7.50 ma f i = 3.75 ma f *c l is approximately 15 pf which includes probe and stray wiring capacitance. v cc = 5.0 v t a = 25? 105 90 5913 i f ?pulse input current ?ma 75 15 11 7 30 t p ?propagation delay ?ns 60 45 t plh , r l = 4 k t plh , r l = 1 k t plh , r l = 350 t phl , r l = 350 1 k 4 k v cc = 5.0 v i f = 7.5 ma 100 8 0 -60 -20 20 60 100 t a ?temperature ?? 60 8 0 40 0 -40 0 t p ?propagation delay ?ns 40 20 t plh , r l = 4 k t plh , r l = 1 k t plh , r l = 350 t phl , r l = 350 1 k 4 k v cc = 5.0 v i f = 7.5 ma 40 30 -20 20 60 100 t a - temperature - o c 20 80 40 0 -40 pwd - pulse width distortion - ns 10 r l = 350 r l = 1 k r l = 4 k 0 -60 -10 t r , t f ?rise, fall time ?ns -60 0 t a ?temperature ?? 100 300 -20 40 20 60 -40 0 40 8 0 60 290 20 v cc = 5.0 v i f = 7.5 ma r l = 4 k r l = 1 k r l = 350 , 1 k , 4 k t rise t fall r l = 350 figure 8. test circuit for t phl and t plh . figure 9. typical propagation delay vs. tem- perature. figure 10. typical propagation delay vs. pulse input current. figure 11. typical pulse width distortion vs. temperature. figure 12. typical rise and fall time vs. tempera- ture.
18 output v monitoring node o 1.5 v t ehl t elh v e input o v output 3.0 v 1.5 v +5 v 7 5 6 8 2 3 4 1 pulse gen. z = 50 t = t = 5 ns o f i f l r cc v 0.1 ? bypass *c l *c is approximately 15 pf which includes probe and stray wiring capacitance. l gnd r 7.5 ma input v e monitoring node t e ?enable propagation delay ?ns -60 0 t a ?temperature ?? 100 90 120 -20 30 20 60 -40 0 40 8 0 60 v cc = 5.0 v v eh = 3.0 v v el = 0 v i f = 7.5 ma t elh , r l = 4 k t elh , r l = 1 k t ehl , r l = 350 , 1 k , 4 k t elh , r l = 350 +5 v 7 5 6 8 2 3 4 1 cc v 0.1 ? bypass gnd output v monitoring node o pulse generator z = 50 o + i f b a v ff cm v r l single channel +5 v 7 5 6 8 2 3 4 1 cc v 0.1 ? bypass gnd output v monitoring node o pulse generator z = 50 o + i f b a v ff cm v r l dual channel v o 0.5 v o v (min.) 5 v 0 v switch at a: i = 0 ma f switch at b: i = 7.5 ma f cm v h cm cm l o v (max.) cm v (peak) v o figure 13. test circuit for t ehl and t elh . figure 14. typical enable propagation delay vs. temperature. figure 15. test circuit for common mode transient immunity and typical waveforms.
19 output power ?p s , input current ?i s 0 0 t s ?case temperature ?? 200 50 400 125 25 75 100 150 600 8 00 200 100 300 500 700 p s (mw) i s (ma) hcpl-2611 option 060 175 output power ?p s , input current ?i s 0 0 t s ?case temperature ?? 175 50 400 125 25 75 100 150 600 8 00 200 100 300 500 700 p s (mw) i s (ma) hcnwxxxx gnd bus (back) v cc bus (front) enable 0.1? 10 mm max. (see note 5) output nc nc single channel device illustrated. figure 16. thermal derating curve, dependence of safety limiting value with case temperature per iec/en/din en 60747-5-2. figure 17. recommended printed circuit board layout.
20 figure 18. recommended ttl/lsttl to ttl/lsttl interface circuit. *diode d1 (1n916 or equivalent) is not required for units with open collector output. v cc1 5 v gnd 1 d1* i f v f shield single channel device 8 6 5 390 0.1 ? bypass 2 3 + 5 v gnd 2 v cc2 2 470 1 7 v e v cc1 5 v gnd 1 d1* shield dual channel device channel 1 shown 8 7 5 390 0.1 ? bypass 1 2 + 5 v gnd 2 v cc2 2 470 1 i f v f
21 propagation delay, pulse-width distortion and propagation delay skew propagation delay is a fi gure of merit which describes how quickly a logic signal propagates through a sys- tem. the propaga tion delay from low to high (t plh ) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. similarly, the propagation delay from high to low (t phl ) is the amount of time required for the input signal to propagate to the output causing the output to change from high to low (see figure 8). pulse-width distortion (pwd) results when t plh and t phl diff er in value. pwd is defi ned as the diff erence be- tween t plh and t phl and often determines the maximum data rate capa bil ity of a transmission system. pwd can be expressed in percent by dividing the pwd (in ns) by the minimum pulse width (in ns) being transmitted. typi- cally, pwd on the order of 20-30% of the minimum pulse width is tolerable; the exact fi gure depends on the par- ticular application (rs232, rs422, t-l, etc.). propagation delay skew, t psk , is an important parameter to consider in parallel data appli ca tions where synchroniza- tion of signals on parallel data lines is a concern. if the parallel data is being sent through a group of optocou- plers, diff er ences in propagation delays will cause the data to arrive at the outputs of the optocouplers at diff er- ent times. if this diff erence in propagation delays is large enough, it will determine the maximum rate at which parallel data can be sent through the optocouplers. propagation delay skew is defi ned as the diff erence be- tween the minimum and maximum propagation delays, either t plh or t phl , for any given group of optocouplers which are operating under the same conditions (i.e., the same drive current, supply voltage, output load, and op- erating tempera ture). as illustrated in figure 19, if the in- puts of a group of optocouplers are switched either on or off at the same time, t psk is the diff erence between the shortest propagation delay, either t plh or t phl , and the longest propagation delay, either t plh or t phl . as mentioned earlier, t psk can determine the maximum parallel data transmission rate. figure 20 is the timing diagram of a typical parallel data application with both the clock and the data lines being sent through opto- couplers. the fi gure shows data and clock signals at the inputs and outputs of the optocouplers. to obtain the maximum data transmission rate, both edges of the clock signal are being used to clock the data; if only one edge were used, the clock signal would need to be twice as fast. propagation delay skew repre sents the uncertainty of where an edge might be after being sent through an opto coupler. figure 20 shows that there will be uncer- tainty in both the data and the clock lines. it is important that these two areas of uncertainty not overlap, other- wise the clock signal might arrive before all of the data outputs have settled, or some of the data outputs may start to change before the clock signal has arrived. from these considera tions, the absolute minimum pulse width that can be sent through optocouplers in a parallel appli- cation is twice t psk . a cautious design should use a slightly longer pulse width to ensure that any additional uncer- tainty in the rest of the circuit does not cause a problem. the t psk specifi ed optocouplers off er the advantages of guaranteed specifi cations for propagation delays, pulse- width distortion and propagation delay skew over the recom mended temper a ture, input current, and power supply ranges. figure 19. illustration of propagation delay skew - t psk . figure 20. parallel data transmission example. 50% 1.5 v i f v o 50% i f v o t psk 1.5 v data t psk inputs clock data outputs clock t psk
for product information and a complete list of distributors, please go to our website: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies limited in the united states and other countries . data subject to change. cop y right ? 2005-2012 avago technologies limited. all rights reserved. obsoletes av02-0170en av02-0940en - februar y 16, 2012


▲Up To Search▲   

 
Price & Availability of HCPL-2630-000E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X